Math 4A Week 6 - November 10, 2014

1. Given A, find the basis of the null space.

$$
A=\left[\begin{array}{lllll}
3 & 8 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

2. Given B, find the basis of the column space.

$$
B=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
3 & 8 & 0 & 0 & 0
\end{array}\right]
$$

3. Write $\left(\begin{array}{l}3 \\ 4 \\ 5 \\ 6\end{array}\right)$ in terms of the standard basis.
4. What is the dimension of W ? Is W a subspace? If so, what is it a subspace of?

$$
W=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{c}
5 \\
6 \\
7 \\
8
\end{array}\right),\left(\begin{array}{c}
11 \\
14 \\
17 \\
20
\end{array}\right),\left(\begin{array}{c}
7 \\
10 \\
13 \\
16
\end{array}\right)\right\}
$$

5. Given the basis $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$, and vector $v=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$,
(i). write the change-of-coordinates matrix $P_{\mathcal{B}}$, the e-coordinates of v, \mathcal{B}-coordinates of v,
(ii). explain what the equation $v=P_{\mathcal{B}}[v]_{\mathcal{B}}$ is doing.
